

## Implicit derivatives in systems of equations

### Implicit differentiation in systems of equations with one independent variable

Just as a surface can be defined implicitly by a single equation, a curve in space can be defined implicitly by a system of two equations:

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

For example, the system may implicitly define  $y = f(x)$  and  $z = g(x)$ , meaning that both depend on a single independent variable. In this case, we say that the system defines two of the three variables as functions of the remaining one.

#### Requirements for applying implicit differentiation

In order to differentiate  $y$  and  $z$  with respect to  $x$ , the following conditions must be met:

1. **Solution verification:** The point of interest  $(x_0, y_0, z_0)$  must satisfy both equations, that is:

$$F(x_0, y_0, z_0) = 0 \quad \text{and} \quad G(x_0, y_0, z_0) = 0$$

2. **Differentiability of  $F$  and  $G$ :** Both functions must be differentiable in a neighborhood of the point, with continuous partial derivatives.

3. **Non-vanishing Jacobian with respect to  $y$  and  $z$ :** The determinant

$$J = \frac{\partial(F, G)}{\partial(y, z)} = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} \neq 0$$

must be nonzero so that the system has a unique solution for  $\frac{dy}{dx}$  and  $\frac{dz}{dx}$

### Derivation of the derivative formulas

We start from the implicit equations:

$$F(x, y, z) = 0, \quad G(x, y, z) = 0$$

Differentiating both equations:

By the definition of the derivative and the chain rule, differentiating with respect to  $x$  yields:

$$\frac{d}{dx} F(x, y(x), z(x)) = \frac{\partial F}{\partial x}(x, y, z) + \frac{\partial F}{\partial y}(x, y, z) \frac{dy}{dx} + \frac{\partial F}{\partial z}(x, y, z) \frac{dz}{dx} = 0$$

Note that here  $x$  is the independent variable, so  $dx/dx = 1$ , and we directly obtain:

$$F_x(x, y, z) + F_y(x, y, z) \frac{dy}{dx} + F_z(x, y, z) \frac{dz}{dx} = 0$$

Similarly, for the second equation  $G(x, y, z) = 0$ , applying the chain rule yields:

$$G_x(x, y, z) + G_y(x, y, z) \frac{dy}{dx} + G_z(x, y, z) \frac{dz}{dx} = 0$$

Thus, we obtain the following system of equations:

$$\begin{cases} F_x + F_y \frac{dy}{dx} + F_z \frac{dz}{dx} = 0 \\ G_x + G_y \frac{dy}{dx} + G_z \frac{dz}{dx} = 0 \end{cases}$$

We isolate the unknowns:

$$\begin{cases} F_y \frac{dy}{dx} + F_z \frac{dz}{dx} = -F_x \\ G_y \frac{dy}{dx} + G_z \frac{dz}{dx} = -G_x \end{cases}$$

And write the system in matrix form:

$$\begin{pmatrix} F_y & F_z \\ G_y & G_z \end{pmatrix} \begin{pmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{pmatrix} = - \begin{pmatrix} F_x \\ G_x \end{pmatrix}$$

### Solution via Cramer's Rule

This linear system in the unknowns  $\frac{dy}{dx}$  and  $\frac{dz}{dx}$  is solved using determinants:

$$\frac{dy}{dx} = \frac{\begin{vmatrix} -F_x & F_z \\ -G_x & G_z \end{vmatrix}}{J} \quad \text{and} \quad \frac{dz}{dx} = \frac{\begin{vmatrix} F_y & -F_x \\ G_y & -G_x \end{vmatrix}}{J}$$

It can also be written more compactly as a ratio of mixed partial derivatives:

$$\frac{dy}{dx} = -\frac{\partial(F, G)/\partial(x, z)}{\partial(F, G)/\partial(y, z)} \quad \text{and} \quad \frac{dz}{dx} = -\frac{\partial(F, G)/\partial(y, x)}{\partial(F, G)/\partial(y, z)}$$

### Example

Consider the system of equations

$$\begin{cases} xy + z = 2 \\ x - y + z^2 = 0 \end{cases}$$

which defines  $y$  and  $z$  implicitly as functions of  $x$  (i.e.,  $y = y(x)$  and  $z = z(x)$ ). To apply implicit differentiation, we define:

$$F(x, y, z) = xy + z - 2 = 0 \quad G(x, y, z) = x - y + z^2 = 0$$

**Step 1: Compute partial derivatives** For  $F(x, y, z)$ :

$$F_x = y, \quad F_y = x, \quad F_z = 1$$

For  $G(x, y, z)$ :

$$G_x = 1, \quad G_y = -1, \quad G_z = 2z$$

**Step 2: Differentiate implicitly and write the system** Using the chain rule:

$$F_x + F_y \frac{dy}{dx} + F_z \frac{dz}{dx} = 0 \implies y + x \frac{dy}{dx} + \frac{dz}{dx} = 0$$

$$G_x + G_y \frac{dy}{dx} + G_z \frac{dz}{dx} = 0 \implies 1 - \frac{dy}{dx} + 2z \frac{dz}{dx} = 0$$

Rewriting:

$$\begin{cases} x \frac{dy}{dx} + \frac{dz}{dx} = -y \\ -\frac{dy}{dx} + 2z \frac{dz}{dx} = -1 \end{cases}$$

**Step 3: Matrix form of the system** We can write the system as:

$$\begin{pmatrix} F_y & F_z \\ G_y & G_z \end{pmatrix} \begin{pmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{pmatrix} = - \begin{pmatrix} F_x \\ G_x \end{pmatrix}$$

which becomes:

$$\begin{pmatrix} x & 1 \\ -1 & 2z \end{pmatrix} \begin{pmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{pmatrix} = - \begin{pmatrix} y \\ 1 \end{pmatrix}$$

**Step 4: Solve the system using Cramer's Rule** The determinant of the system (Jacobian) is:

$$J = \begin{vmatrix} x & 1 \\ -1 & 2z \end{vmatrix} = 2xz + 1$$

Then, applying Cramer's rule:

For  $\frac{dy}{dx}$ :

$$\frac{dy}{dx} = \frac{\begin{vmatrix} -y & 1 \\ -1 & 2z \end{vmatrix}}{J} = \frac{(-y)(2z) - (1)(-1)}{2xz + 1} = \frac{-2yz + 1}{2xz + 1}$$

For  $\frac{dz}{dx}$ :

$$\frac{dz}{dx} = \frac{\begin{vmatrix} x & -y \\ -1 & -1 \end{vmatrix}}{J} = \frac{x(-1) - (-y)(-1)}{2xz + 1} = \frac{-x - y}{2xz + 1}$$

## Implicit Differentiation in Systems of Equations (2 Independent Variables)

We consider the case in which two equations

$$F(x, y, u, v) = 0 \quad \text{and} \quad G(x, y, u, v) = 0$$

define implicitly two functions of two independent variables:

$$u = h(x, y) \quad \text{and} \quad v = m(x, y)$$

### Derivation of Partial Derivative Formulas

We start from the implicit equations:

$$F(x, y, u, v) = 0 \quad \text{and} \quad G(x, y, u, v) = 0$$

To obtain the partial derivatives of  $u$  and  $v$  with respect to  $x$  (keeping  $y$  constant), we proceed as follows:

#### (1) Partial derivatives with respect to $x$ :

We consider  $u = u(x, y)$  and  $v = v(x, y)$ . Then, applying the chain rule to  $F(x, y, u, v) = 0$  we get:

$$\frac{d}{dx} F(x, y, u(x, y), v(x, y)) = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x} = 0$$

Here, when differentiating with respect to  $x$ , the variable  $y$  is considered constant.

Similarly, differentiating  $G(x, y, u, v) = 0$  with respect to  $x$  yields:

$$\frac{d}{dx} G(x, y, u(x, y), v(x, y)) = \frac{\partial G}{\partial x} + \frac{\partial G}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial G}{\partial v} \frac{\partial v}{\partial x} = 0$$

We can express the resulting system as:

$$\begin{cases} F_x(x, y, u, v) + F_u(x, y, u, v) \frac{\partial u}{\partial x} + F_v(x, y, u, v) \frac{\partial v}{\partial x} = 0 \\ G_x(x, y, u, v) + G_u(x, y, u, v) \frac{\partial u}{\partial x} + G_v(x, y, u, v) \frac{\partial v}{\partial x} = 0 \end{cases}$$

Rewriting to isolate the unknown derivatives:

$$\begin{cases} F_u \frac{\partial u}{\partial x} + F_v \frac{\partial v}{\partial x} = -F_x \\ G_u \frac{\partial u}{\partial x} + G_v \frac{\partial v}{\partial x} = -G_x \end{cases}$$

This system can be written in matrix form as:

$$\begin{pmatrix} F_u & F_v \\ G_u & G_v \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial x} \end{pmatrix} = - \begin{pmatrix} F_x \\ G_x \end{pmatrix}$$

## (2) Partial derivatives with respect to $y$ :

Now we differentiate with respect to  $y$  (keeping  $x$  constant). Applying the chain rule to  $F(x, y, u, v) = 0$ , we obtain:

$$\frac{d}{dy} F(x, y, u(x, y), v(x, y)) = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial y} = 0$$

Similarly, for  $G$  we have:

$$\frac{d}{dy} G(x, y, u(x, y), v(x, y)) = \frac{\partial G}{\partial y} + \frac{\partial G}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial G}{\partial v} \frac{\partial v}{\partial y} = 0$$

## Resulting System

$$\begin{cases} F_y(x, y, u, v) + F_u(x, y, u, v) \frac{\partial u}{\partial y} + F_v(x, y, u, v) \frac{\partial v}{\partial y} = 0 \\ G_y(x, y, u, v) + G_u(x, y, u, v) \frac{\partial u}{\partial y} + G_v(x, y, u, v) \frac{\partial v}{\partial y} = 0 \end{cases}$$

Rewriting:

$$\begin{cases} F_u \frac{\partial u}{\partial y} + F_v \frac{\partial v}{\partial y} = -F_y \\ G_u \frac{\partial u}{\partial y} + G_v \frac{\partial v}{\partial y} = -G_y \end{cases}$$

Matrix form:

$$\begin{pmatrix} F_u & F_v \\ G_u & G_v \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial y} \end{pmatrix} = - \begin{pmatrix} F_y \\ G_y \end{pmatrix}$$

## Solution using Cramer's Rule:

Let

$$J = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

Then, applying Cramer's Rule for the system with respect to  $x$ , we obtain:

$$\frac{\partial u}{\partial x} = \frac{\begin{vmatrix} -F_x & F_v \\ -G_x & G_v \end{vmatrix}}{J} \quad \frac{\partial v}{\partial x} = \frac{\begin{vmatrix} F_u & -F_x \\ G_u & -G_x \end{vmatrix}}{J}$$

And for the system with respect to  $y$ :

$$\frac{\partial u}{\partial y} = \frac{\begin{vmatrix} -F_y & F_v \\ -G_y & G_v \end{vmatrix}}{J} \quad \frac{\partial v}{\partial y} = \frac{\begin{vmatrix} F_u & -F_y \\ G_u & -G_y \end{vmatrix}}{J}$$

In this way, we obtain the four partial derivatives describing how  $u$  and  $v$  vary with respect to  $x$  and  $y$ :

$$\frac{\partial u}{\partial x}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial y}$$

## Example

Consider the following system of equations:

$$\begin{cases} F(x, y, u, v) = x u + y v - 2 = 0 \\ G(x, y, u, v) = u^2 - v + x y = 0 \end{cases}$$

which defines  $u$  and  $v$  implicitly as functions of  $x$  and  $y$ , i.e.,  $u = u(x, y)$  and  $v = v(x, y)$

### Step 1: Compute the Partial Derivatives of $F$ and $G$

For the function

$$F(x, y, u, v) = x u + y v - 2$$

we compute:

$$F_x = u, \quad F_y = v, \quad F_u = x, \quad F_v = y$$

For the function

$$G(x, y, u, v) = u^2 - v + x y$$

we compute:

$$G_x = y, \quad G_y = x, \quad G_u = 2u, \quad G_v = -1$$

### Step 2: Partial Derivatives with respect to $x$

Since  $u = u(x, y)$  and  $v = v(x, y)$ , we apply the chain rule to each equation (keeping  $y$  constant).

For  $F(x, y, u, v) = 0$ :

$$F_x + F_u u_x + F_v v_x = 0 \implies u + x u_x + y v_x = 0$$

For  $G(x, y, u, v) = 0$ :

$$G_x + G_u u_x + G_v v_x = 0 \implies y + 2u u_x - v_x = 0$$

We write the system in matrix form:

$$\begin{pmatrix} F_u & F_v \\ G_u & G_v \end{pmatrix} \begin{pmatrix} u_x \\ v_x \end{pmatrix} = - \begin{pmatrix} F_x \\ G_x \end{pmatrix}$$

that is:

$$\begin{pmatrix} x & y \\ 2u & -1 \end{pmatrix} \begin{pmatrix} u_x \\ v_x \end{pmatrix} = - \begin{pmatrix} u \\ y \end{pmatrix}$$

We define the Jacobian of the system (with respect to the dependent variables  $u$  and  $v$ ):

$$J = \begin{vmatrix} x & y \\ 2u & -1 \end{vmatrix} = x(-1) - y(2u) = -x - 2u y$$

Applying Cramer's rule:

For  $u_x$ :

$$\frac{\partial u}{\partial x} = \frac{\begin{vmatrix} -F_x & F_v \\ -G_x & G_v \end{vmatrix}}{J} = \frac{\begin{vmatrix} -u & y \\ -y & -1 \end{vmatrix}}{-x - 2u y}$$

Computing the determinant:

$$(-u)(-1) - y(-y) = u + y^2$$

Therefore,

$$u_x = \frac{u + y^2}{-x - 2u y}$$

For  $v_x$ :

$$\frac{\partial v}{\partial x} = \frac{\begin{vmatrix} F_u & -F_x \\ G_u & -G_x \end{vmatrix}}{J} = \frac{\begin{vmatrix} x & -u \\ 2u & -y \end{vmatrix}}{-x - 2u y}$$

Computing the determinant:

$$x(-y) - (-u)(2u) = -xy + 2u^2$$

Therefore,

$$v_x = \frac{-xy + 2u^2}{-x - 2u y}$$

### Step 3: Partial Derivatives with Respect to $y$

Now we differentiate with respect to  $y$  (keeping  $x$  constant).

For  $F(x, y, u, v) = 0$ :

$$F_y + F_u u_y + F_v v_y = 0 \implies v + x u_y + y v_y = 0$$

For  $G(x, y, u, v) = 0$ :

$$G_y + G_u u_y + G_v v_y = 0 \implies x + 2u u_y - v_y = 0$$

The system in matrix form is the same:

$$\begin{pmatrix} x & y \\ 2u & -1 \end{pmatrix} \begin{pmatrix} u_y \\ v_y \end{pmatrix} = - \begin{pmatrix} v \\ x \end{pmatrix}$$

Applying Cramer's rule again:

For  $u_y$ :

$$\frac{\partial u}{\partial y} = \frac{\begin{vmatrix} -F_y & F_v \\ -G_y & G_v \end{vmatrix}}{J} = \frac{\begin{vmatrix} -v & y \\ -x & -1 \end{vmatrix}}{-x - 2u y}$$

Determinant:

$$(-v)(-1) - y(-x) = v + xy$$

Therefore,

$$u_y = \frac{v + xy}{-x - 2u y}$$

For  $v_y$ :

$$\frac{\partial v}{\partial y} = \frac{\begin{vmatrix} F_u & -F_y \\ G_u & -G_y \end{vmatrix}}{J} = \frac{\begin{vmatrix} x & -v \\ 2u & -x \end{vmatrix}}{-x - 2u y}$$

Determinant:

$$x(-x) - (-v)(2u) = -x^2 + 2u v$$

Therefore,

$$v_y = \frac{-x^2 + 2u v}{-x - 2u y}$$